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A theory of rotationally and vibrationally inelastic collisions in
atom-diatomic molecule scattering is pre;ented in which both rotations
and vibrations are treated semiclassically. The formalism, however,
allows for an unambiguous specification of the initial and final quantum
states even though the S-matrix itself is calculated in the classical
limit. This development is particularly suited to the description of
inelastic collision processes among the highly excited rotational-

vibrational states which 1ie near the continuum.\
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In the generalized phase shift, GPS, treatment of rotationally

inelastic atom-diatom collisions, the S-matrix is transformed (through

a transformation involving vector coupling coefficients and representation

coefficients) in such a manner that the indices describing the final
quantum states of the rotor are replaced by a set of Euler angles which
in the semiclassical regime become continuous. Here we present an
analogous treatment of the coupled rotational-vibrational problem. The
S-matrix which is labelled by discrete indices describing the initial
and final vibrational and rotational states of the diatomic molecule is
transformed (through a similar transformation which now involves, in
addition, the vibrational wave functions of the isolated diatomic
molecule) to one in which the indices associated with the final states
are replaced by three Euler angles, as in the GPS development, and a
continuous parameter associated with the vibrational motion. This
parameter is the internuclear separation coordinate of the diatomic
molecule. The resulting equations are especially suited to a
semiclassical analysis paralleling that given earh’er1 for rotationally
inelastic scattering. Since the present development parallels that in
reference 1, equations of that paper are denoted by a prefix I, i.e.
Eq. (I- ).

This semiclassical development is believed to be well suited to the
description of vibrational transitions among the highly excited states
of the diatomic molecule. In particular it is applicable to such
problems as the termolecular recombination of hydrogen2 via the

mechanism
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The stabilization of the metastable H, by collision with the third body
M (M = Ar, He, etc.) involves both vibrational and rotational
de-excitations within the levels close to the continuum.3 The
application of this semiclassical method to this problem is currently
being investigated. 4

The problem considered is the nonreactive collision of an atom and
a diatomic molecule interacting through a Born-Oppenheimer potential.
A center of mass coordinate system is chosen in which & 1is the vector
between the atoms comprising the molecule and r is the vector between
the atom and the center of mass of the diatomic molecule. The internal

state of the diatomic molecule is described by the wave function
Z(vesg) Yp(8)

and is labelled by the vibrational quantum number v and rotational
quantum numbers £ and m . The vg(é) are normalized spherical
harmonics and the radial functions Z(v#&;E) are eigenfunctions of

the differential equation

2 42 2 g
{- gﬁ'é%f + vg + !Liﬁé%ill - Eb(vz)]Z(vz;E) = 0. (1)
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In this equation M and VE , respectively, are the reduced mass and
potential energy of the isolated diatomic molecule and Eb (Eb <0

measured from the separated atom 1imit) is the binding energy of the

molecule. These radial functions satisfy the completeness and

orthogonality conditions that

Y Z(ve3E)* Z(ve3E') = &(&-E') (2)
v
and

[ 20 2tvsieee = s, (3)

An integration over continuum states is implicitly contained in the

~ completeness relation Eq. (2).

A1l of the information about the scattering process is contained
in a set of complex functions, Q(t)(VEX;Sgr) , which satisfy the following
pair of coupled equations;4

4 explial*) (¥ikiser)] = P J ds' de' ds" de

=

) (asses e sr) v (rever)
(4)

{F(+)(EX;S"£"S'€';r)* exp[iQ(+)(V§X;S"€"r)]

- F(')(EX;S“g"S‘E';r)* exp[iQ(')(vzk;S"E“r)]} .

This pair of equations is obtained by suitably transforming those obtained
from an integral equation based upon a separation of the total atom-
molecule interaction potential V(r&6) into elastic, V(O)(r) , and
inelastic, v(])(ree) , contributions. The angle 6 1is that between the




vectors r and & . The matrix elements F(t)(EX;SgS'g';r) are

defined by

T X(RX;vRAL;SE)* f(i’(vzx;r) X(2X;v2AL;S'E")
VAL (5)

FlE) (3%;sesE " 51)
in terms of the basis functions

gt UL 5 b B2 ¥
X(RX;3veAL;SE) = (-1)° (8n7)  [(2e+1)(22+1)(2+1)]

SRR ol (6)
L (=1} D-(S),,, Z(VEsE)* .
vu 0 v -v lO ol TR i
The f(t)(le;r) are solutions of the radial wave equation involving only
the elastic part of the interaction potential. They are defined in
detail in reference 4.

The coupled equations, Eq. (4), may be written in a more compact
form by defining an operator F(t) by its action on an arbitrary

function Y(Q) as

F*) y(q)

f F(*)(EX;QQ';r) Y(a') da' , (7)

where Q stands for the combined indices S& and dQ = df dS . It

follows that

4 oexprial®)] = S A VDT gprig)y - F) expriol)ny
(8)




Another operator, G , is defined by

¢ y(o) - fe(”(ix-,m';r) Y(a') da' (9)
where
G(t)(ii;ﬂn';r) = Y x(EX;vaaL;Q)* [é%-f(t)(le;r)] x(2X;veAL;Q') .
v&AL
(10)

It follows immediately from these definitions that

gbtl o el S () ] (1)

and
F(t) G(i) = G(t) F(i)’ (]2)

where a "prime" indicates differentiation with respect to r . The

equations for Q(+) and Q(') can be uncoupled to give the second

order differential equations5

h? 2, q - h 22 = 2 1Wr gV F 100

+ 72 Qg F(Z n vy g -1 (13)
+ ) g (-1 F']](% e,

where (to simplify the notation) the superscipts (+) have been omitted.

This expression may also be written as

1h‘§r—zzo (h & o) s 2ye 0yl

1

+ih2e'i°[c+uv' + VGV ]e’Q 24,




where U and V are two additional operators defined by

v = Fylled (15)
and

Fi vy (16)

o
I

Useful properties of the operators F and G are obtained in a
manner analogous to that discussed in reference 1. To this end,

operators K and J are defined as

1

ST fe gu 3 g 1)) (Yp)-n , n n
ko= (2S)  [LCHLC- - g {iz%ﬁéTﬁ%"K L LT
2 (17)
£l -2 a0
£ M deZ
and
I E -0"(R)! (Y)-n 0 n
I o= MMMt 2 % (Toinytard My My My" (18)

The angular momentum operators, Lj and Mj , are those used in I. The
factors K and J are given in terms of the initial angular momentum

quantum numbers as

K = Z(Z+1)he (19)
and

J = e, (20)

while E 1is defined in terms of the total initial binding energy of

the diatomic molecule, Eb (Eb <0), by

il cand e i kit — i




E = Eb(vz) - Mz 2(241) . (21)

These K and J operators have the very interesting and useful
properties that x 1is an eigenfunction of K* and J* with the
eigenvalues being the energy inelasticity and the change in the relative

angular momentum, viz.

K* x(2X;vaAL;SE) = -(E-E) x(&X;vRAL;SE) (22)

and

J* x(&8X;veAL;SE) AZLA(A+1) = X(X+1)] x(&X;vRAL;SE) . (23)

The energies

= Et - Eb(vz) (24)
and

E = Et - Eb(vz) (25)
are the relative translational energies of the molecules before and

after a collision; E_ is the total center of mass energy.

t
The functions f(*)(vzx) central to the operators F and G can

be written in the form (see Eq. (I-39))
£ yar) = (&) expld s v . (26)

The functions S(t)(vkx) , or dropping the superscripts, S(v&i) ,
depend on v, 2 and X only through the quantities E and A(A+1)h2 v




Therefore, they may be expanded in a double Taylor series about their

values at E=E and A(A+1)ﬁ2 =J ;

s(var) = § ks (E-E)" ow)pe - 0] (27)
mn
where
ool el e
Sm“ = -a—Eﬁa—J'ﬁS(WU\) - (28)

These properties enable the integral operators F and G to be written
in differential forms. By the definition Eq. (8), F acting on an

arbitrary function Y(Q) is given by

FY(Q = ] x(&X;veaL;Q)* f(vear) I X(ZX3vRAL3 Q') Y(R') d'
V&AL
y (29)
2 My e : ik
(g~) Y X(RX;VRAL;Q)* e(1/h)$(vzx) J X(2A3veAL; Q') Y(Q') dR' .
o veil
From the eigenvalue relations Eqs. (22) and (23) and the expansion
Eq. (27), it follows that
v = ) g w { vy enld § GL° (%)™
Q) = (5 X{2AVAAL;Q Y(R') expls S__(K*)"(J*)
2u VAL J h A min!  “mn
(30)

X(ZX;veAL 50" )dQ' .

Since the operators K and J are hermitian and the x(2X;v&AL;R) obey

the completeness relation that

T x(RX3veAL;Q)* x(2X;veAL;Q') = §(Q-Q')
veAL

G(S'S') 6(£'€' ) s
(31)




Eq. (30) is equivalent to the expression

FY@ = B9 el 81 ¥(a) (32)
where
m
s =yl "o (33)
mn

Because Y(R) is an arbitrary function, F has the differential form

)

T ;
Fo= B exnlf s (34)

Similarly, G can be expressed as
Lo (35)

A semiclassical solution to the equation for Q can be obtained
after suitable approximations are made concerning the operator F .
First, the function S(o) , defined by Eqs. (I-37) and (I-38), is

written in the series form
sOOwax) = si + i SR L (36)

where the S£O) are given by Eqs. (I-53) through (I-56). In a similar
manner, the functions S(t)(vzx) [or S(v&X) ] and the operators K

and J have the series representations




s(vax) =y (in)" g

=0
K = [ mk ,
n=0
and
e
n=1
where

n

Ko = VIE) - E(8)

Ky = - ZEmE (LSt e L «ﬁ; ,
Kop = 0; n= 238,000
Tont1 = ;95:i;§:%;én+ gUhe)-n My My My" n=0,1,2,...
dg = ¢ CRUSSTASRY
Jog = 0 B BB .

The operator S defined by Eq. (33) may now be expanded as
S = z (111) sn s
n=0

each of the Sn , in turn, being written as a finite series

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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S

= : (48)
n k=0 Nk

Each operator snk is at most of order k in derivatives with respect
to angles and the internal separation distance of the diatomic

molecule. Specifically, the first few terms are

© m
S = ¥ ﬂLKmS

n0 g M0 Pnanp (49)
= g-]!m m
Smo = LS Ko Dnoim 17 Spaen,o K1 (50)
and
& b (-12m m 2o 2
Snz = L Smr Ko L Spamez,0 K1 * Y2 Spozym,2 0y
= Sp-2,m1,1 71 K1 * Sz, 7] Lol
eo o]
g-l)m s 4 m-4-1
K mzl m! AZO o ke Ko Sn-2,m,0
where
S
SP’WF 5 (aE) (BJ) Sp . (52)

Except for the last term in Sn2 » the infinite sums that appear in the
snk have the effect of just replacing the initial translational energy

E , which parameterizes the S

Ey - ez~ V(E) 3

s by the effective energy

p,mn




] T B - a0

mZo Lﬁﬁl— Ko Sn,m+4,t 2 mZO Lﬁﬁl_ [v(E) - E(€) ] ;Eﬁ'sn,a;
PRt K =am 3 \m
= mZO —TlEy - MET " v(g) - E] (aE) Sn,4$ (53)
= Sn,b,t ! E=E o K 3 V(g) = S(E)n,b,t .

t = 2MEZ

In terms of the S(£) just defined, the S,k are given by

s (el (54)

e

3 SEp a0k * S, T o 95

nl

g 2
Spz = Bl oy Izt »gs(a)n_z,gp Ky = sl8) 5 07 K 9

b

2

+ I/ZS(g)n_Z,QZ J] ¥ S(E)n_z’l’o Kz o yzs(g)n_z’%o[Kousl (56)

Ly ]/SS(g)n_z’w[KO,[Kousl] s

where the results of the Appendix have been used in the expression for

S The expressions for Sno and Sn] are identical in form to

n2 °

Eqs. (I-68) and (I-69) with S replaced by the corresponding

n,st
E-parametrized quantities S(E;)n’At . The expression for Sn2 contains
additional terms involving commutators of Ko with K2 4

In this way, the central quantities that must be calculated for the
description of the full vibration-rotation inelastic scattering problem
are reduced to expressions similar to those arising in the rotation

problem alone. The difference is that now the generalized action




o

13

integrals are parameterized by the internuclear separation distance of
the diatomic molecule. This only affects the effective translational
energy at which the generalized action integrals are evaluated.

Using the expansion, Eq. (47), one finds that

e(i/h)S = [z (m)n Rn] e-S“ e-Sl e(T/h)So (57)
n
and

SIS -Li/h)Se S Sy (ih)" A (58)
n

The operators Rn and P, are given by Egs. (I-75) through (I-81), but
once again the appropriate £-parameterized quantities must be used.

The problem is thus reduced to that of reference I and the further
analysis is not repeated here. The essential difference is that
the various quantities have an additional dependence on the variable £ .

The result is that when Q 1is written in the semiclassical form
Q = #I(m"q,, (59)
n
the coefficients QO and Q] satisfy the equations

(2 g)? - Gyol2- Q) + 2u Ugy = O (60)
and
~ ~ 2
26y~ (2 01 Q) = -2 ¥y -27 Qg
(61)

el e S e s .3
+ {Ugg Woo* WoolGyq:Ygol * WoglVy1+Ggod - 261 H(55 Q) -
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The expressions for the quantities G, V and @ are the same as those in I.

It is remarked once again that all of these quantities depend on &£

through the S(&) which are central to their definitions. It

n,at
should also be noted that V(]) implicit in the expressions for G,

Vv and & is still given by
1 - Ui g, (62)

but the angles ¢ and 6 wused to specify the rotation S ',

st = (a,0,r) S(r,0,1) , (63)

depend on £ as well;
) e %gé S(E)O’]}’0 , (64)
0 = ole) = 20" S(E)g g - (65)

To first order in the inelasticity, the so]ution56 of Eq. (60) are

given by

0§ (@RsEr) = 1n 2(¥EsE) + 2n(VE) - r|f(')(vixn2 v ) eyar: i
r :

(66)
and
o$*) (vaiser) - 1nz(\7’z;£)+2n(\7i)-#zr(g) £ ax) 12 v (1) g yae
r
0
R 0 P e S L) N O S
?‘Ezjro(g) If (VR}\)I '} (T ,E)d?‘ . (67)
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The rotations T(t) are given by

™) o (m(E).m) Sr.8(E),m) (68)
and

) = 29 - vie)m sir,20% ) - 6(e),m) L (69)

where w(o)(a) and 9(0)(6) are the values of Y(&) and 6(&) at the
turning point ro(g) . The results Eqs. (66) and (67) may then be used
in Eq. (61) to generate the solutions Q$+) and Q%') a

Knowledge of the Q(+)(91XS£) is sufficient to determine the

S-matrix (in an unusual representation)

iq*) (vaxse)

S(vEXsg) = lim e (70)
r o>
in which the initial state of tne system is specified but the final
state indices are replaced by the angles S and the distance ¢ .
From this S-matrix, the transition amplitude, T(vZX;vRAL) , may
readily be determined;
i 5 7 -2
T(vEX;veAL) = &(vEXO|velL) - (-1)’“X (8172)
(71)

r .
} x(ZX;vRAL;SE) S(VRASE)dE dS .

These expressions, Eqs. (70) and (71), for the S- and T-matrices are
exact but when combined with the previous results for Q(vEXSE)

provide an approximation in which the rotational-vibrational scattering
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is treated in a semiclassical manner. Despite the semiclassical nature

of the development, the initial and final quantum states are

unambiguously specified in the scattering amplitude.
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APPENDIX

Since KO and l(z do not commute, the sums in the expression

® -1
(-1 !m m 4 m-4-1
{1 m! AZO Ko B2 Ky 3

n-2,m0

(which is the last term in an’ Eq. (51)) cannot be evaluated as in

Eq. (53). However, these sums may be evaluated in the following way;7

o m-1

o t t+1
(-l)m ) m-4-1 i (-1) 4 t-4
mzl 420 m! KO B KO Sn-2,m0 tZO 420 t+1)! K0 Kz K0 Sn-z,tﬂ,o

o o -1 p+4+'| _K_Q_A_' Kop
AZO pZO (prar )T Pt 5T Ko D1 Snoz, prasip

e 3,4 9.,p
_y pls! (Ko am)  Koap)
op (p+s+1)! sl 2 p! n-2,10

(A-1)

3 \4 3,\p
pKosg)l  (Koap)
Al

Ky —p1 n-2,10

3 r do(1-a)® o

4P ‘o

: * 1 (a-1)Ko(3/0E) -aKg(3/9E)
L . ; Ky &0 Sh-2,10 °

where the substitution p = t-4 , the integral representation for the

beta function® pls!/(p+s+1)! , and the definition of the S

p,mn
Eq. (52), have been used. The integral is evaluated by defining a

commutator superoperator A as
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o= K, fE,A] (A-2)

where A is any operator. It follows that

[l do exp[(a-1) K0 giJKZ exp[-a Ko g%]
0

34 [! oA
exp[-K0 SFJ L e do K2 A-3)

34 [exp(a)-1]
exp[-Ko EE-] A K2 c

Since K2 is a second-order differential operator, the effect of

[exp(A)-1]/a on K2 may be evaluated explicitly with the result that

Y=Lk, = Ky + KKy T + kol JIEE . (aet)

These results together with Eq. (53) imply that

o m m
CUP s s ge'
I WK K KT S g = S(E) 10 K

(A-5)
'yz S(E)H-Z,ZO[KO’KZ] 5 ])’5 S(E)n-2,3O[K0’[K0’K2]] .
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